An implicit interface boundary integral method for Poisson's equation on arbitrary domains
نویسندگان
چکیده
We propose a simple formulation for constructing boundary integral methods to solve Poisson’s equation on domains with piecewise smooth boundaries defined through their signed distance function. Our formulation is based on averaging a family of parameterizations of an integral equation defined on the boundary of the domain, where the integrations are carried out in the level set framework using an appropriate Jacobian. By the coarea formula, the algorithm operates in the Euclidean space and does not require any explicit parameterization of the boundaries. We present numerical results in two and three dimensions.
منابع مشابه
Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملSolution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method
The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...
متن کاملApplication of Boundera Element Method (Bem) to Two-Dimensional Poisson's Eqation
BEM can be used to solve Poisson's equation if the right hand side of the equation is constant because it can easily be transformed to an equivalent Laplace equation. However, if the right hand side is not constant, then such a treatment is impossible and part of the equation can not be transformed over the boundary, hence, the whole domain has to be discretized. Although this takes away impor...
متن کاملNumerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کاملImplicit boundary integral methods for the Helmholtz equation in exterior domains
We propose a new algorithm for solving Helmholtz equations in the exterior domain. The algorithm not only combines the advantages of implicit surface representation and the boundary integral method, but also provides a new way to compute a class of the so-called hypersingular integrals. The keys to the proposed algorithm are the derivation of the volume integrals which are equivalent to any giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 247 شماره
صفحات -
تاریخ انتشار 2013